Chapter 15

Length, Weight, and Structural Indices

15.1 Introduction

- Methods of measurement of fish structure
- Calculations of indices
- Interpretation of Strucṭurąl Indices

Length frequency data

- Estimate benefit to commercial and recreational fisheries

- Basis for estimating growth, standing crop, and production
- Production (kg/ha/year)

Fish Length \& Weight

- Length defines legal size for harvest
- Relative number of fish in certain size
 categories...measure of management objectives
- Harvest (metric tons) and Standing Stock (kg/ha)

Fish Length \& Weight (cont.)

- Growth described by weight at age or weight gain/year
- Weight \& Length...condition

1 year fish

15.2 Considerations

- Does gear bias influence length and weight measures?

Vs.

- How many fish measured or subsampled for measurement?

Considerations (cont.)

- Does gender influence length \& weight measures?

Vs.

- Weight more error-prone than length.

Length groups and bin sizes

- Convention use 10.0-10.99 instead of 9.5-10.5
- Whole body measurements:
- Maximum standard length - least convenient (1)
- Fork length (2)
- Natural total length (3)

- Maximum total length (4)

Measuring devices

- Measuring boards 1 to measure, 1 to record
- Calipers - small fish
- Measuring tape - largé marine species
- Electronic measuring boards - records automatically

Measuring conventions

- Fish mouth closed
- Head left, tail right

- Measure fresh to avoid shrinkage and rigor mortis

Weighing devices

- Spring loaded scales
- Electronic scales (batterypowered) with digital readout
- Hanging scales measure fish in bulk or large fish

Weighing conventions

- Remove excess moisture on fish
- Periodic calibration of scales
- Remove excess moisture on scale
- Tare often
- Account for wind \& fish, boat motion

Preservation

- Weight goes up about 8\%
- Length goes down about 2\%
- Use fresh specimens if possible

15.3 Weight-Length Relationships

- So length can be converted to weight or vice versa
- Condition - variation from expected weight at a given length

Power function

- W = a * L^b
- $\mathrm{B}>3$...fish get rounder as they grow
- $\mathrm{B}<3$...fish get less rotund as they grow
- B = 3...fish stay same shape as they grow

Transformation

- Estimate a and b using linear regression
- Log10(W) = Log10(a) + b * Log10(L)
- Y = intercept + slope * X

15.4 Indices of Condition

- Fulton condition factor
- Relative condition factor
- Relative weight

\qquad

Fulton Condition Factor

- K = (W/L^3) * 100,000 (millimeters, grams)

- C = (W/L^3) * 10,000 (inches, pounds)

- For fish with b>3, the values of K \& C change with length (poor choice)

Relative Condition Factor

- Kn = (WW')
- W' = a ${ }^{\text {^^b }}$ (for study population, use L,W data and linear regression)

Relative Weight

- $\mathrm{Wr}=(\mathrm{W} / \mathrm{Ws}$) * 100
- Log10(Ws) = a' + b * Log10(L)
(where $a^{\prime}=$ Log10(a))
- Note: a' and b come from literature
- If $\mathrm{Wr} \ll 100$ then fish in poor condition

Relative weight (cont.)

- Varies with length (possible) and time of year
- Related to fat content
- Related to fecundity \& egg quality
- Related to growth

15.5 Weight Models

- Swingle's F/C ratio
- F = weight of forage species
- C = weight of carnivores
- Desirable range 3-6

Problem...some F are too large to be eaten by C

- Swingle's Y/C ratio
- Y = wt of fish in F group available to average adult in C group
- C = weight of carnivores
- desirable range 1-3

Other Swingle Metrics

- Swingle's A_t - percentage of total weight of fish population that is harvestable
- Examples: 60-85\% for LMB and BG
- Swingle's E - percentage of weight of fish community composed of one species or group
- Example: LMB in small impound...14-25\%

Jenkins and Morais metric

- AP/P ratio
- AP = biomass of prey small enough to be eaten by a particular size predator
- P = cumulative biomass of predators of different sizes
- Plotted on a log10 vs log10 scale
- Curve should be above the $1: 1$ line to have sufficient prey for predators

15.6 Length-Frequency Histograms reflect:

- Reproduction
- Recruitment
- Growth
- Mortality

Guidelines

- Sample 100 fish of at least stock size
- Bin sizes
- $30-\mathrm{cm}$ fish... $1-\mathrm{cm}$ interval
$-60-\mathrm{cm}$ fish... $2-\mathrm{cm}$ interval
- $150-\mathrm{cm}$ fish... 5 -cm interval

Guidelines

- Y-axis
- Absolute number of fish per length group
- Percentage in each length group
- Standardized - ex. number per hour electrofishing

15.7 Length-Frequency Indices

Stock-Density Indices: PSD

- PSD = \# of fish > quality size / \# of fish > stock size * 100
- Note: for stock \& quality size see Table 15.2, pg 464
- Round to the nearest whole number

Stock-Density Indices: RSD

- RSD = \# of fish > specified size / \# of fish > stock size * 100
- Round to the nearest whole number
- Stock size (S)
- Quality size (Q)
- Preferred (P)
- Traditional RSD vs Incremental RSD

Stock-Density Indices: Young-Adult Ratio

- YAR = \# fish < $15 \mathrm{~cm} /$ \# fish > 30 cm
- Expected range at moderate LMB density 1-10

Stock Density Indices: Community Models

- Balanced Populations have predictable PSD
- Examples
- Bluegill 20-60
- Crappie 30-60
- Largemouth bass 40-70

Doturwes Duane Vaver

