- •
- •
- •
- •
- •
- •
- •
- •
- •

Chapter 9

Collection, Preservation, and Identification of Fish Eggs and Larvae

9.1 Introduction You will learn...

- Methods of collecting, processing and identifying
- Marine and freshwater studies
- Gears used to collect eggs and larvae
- Effects of physicochemical characteristics and larval behavior

Egg and larval collection important for

- Identification of spawning and nursery areas
- Identification of differences in spawning characteristics
- Ontogenetic changes in movement patterns
- Foraging behavior

Well designed study requires proper

Handling

- Preservation
- Identification

9.2 Collection of fish eggs and larvae

 Pelagic eggs

 Filtration through fine mesh

 Demersal eggs

 Use of artificial substrates and traps

Considerations of gear

- Expense
- Ease of use
- Relative effectiveness
- Sampling bias

Plankton nets

Usually:
Diameter of 0.1m-1m
Nylon mesh cone or cylinder cone
Ends in plankton bucket

Benthic plankton samplers

Sample larvae or eggs on or just above bottom

 Frolander and Pratt-mounted a cylindrical net on a benthic skimmer

Benthic plankton samplers (cont.)

- Dovel-used larger net on benthic sled
- Yocum and Tesar- plankton net on rectangular sled frame

Pelagic Trawls

- Used to sample eggs and larvae in mid-water
- Known as mid-water trawls

Neuston nets

- Towed with the top above water surface
- Samples neustonic organisms

Active Collecting-High Speed Gears

Collect marine and freshwater ichthyoplankton
Samplers are typically large

Shallow-Water Nets

- Shallow areas
- Structurally complex areas

Pumps

 Centrifugal pumps used to collect demersal eggs and larvae Study the spatial distribution of pelagic ichthyoplankton

Pumps...Disadvantages

Pumping volumes small

- Filters and screens can clog
- Pumping area limited to several centimeters of pump intake
- Most larvae are killed or damaged during sampling

Electrofishing gear

 Not widely used to sample larvae Good for shallow or structurally complex areas

Passive Collecting Gears

• Egg Traps

 Capture and protect demersal eggs

 Prove more effective than other methods in number and percentage undamaged

Passive Collecting Gears (cont.)

Drift Samplers

- Drifting eggs and larvae collected with stationary plankton nets
- Both at bottom and top of water column
- Mesh size depends on

 Size of target organisms
 Mesh clogging tendencies

Emergence traps

 Sample the larvae as they leave the nest (emerge)

Activity Traps

Free swimming larvae and juveniles in littoral habitats

Light traps

- Larvae that are positively phototactic
- Used at night (nocturnal)

Sampling Considerations

Formulation of specific research objectives

How many are there? Where are they? When are they?

Sampling Considerations (cont.)

- Development of a study design. Affected by:
 - Budget
 - Personnel
 - Equipment
 - Time limitations

 Biological, ecological physiological and statistical factors

Sampling Considerations (cont.)

- Development of collection methods
 important
 - Knowledge of fish
 reproductive
 behavior
 - Larval behavior and ecology

Sampling Considerations (cont.)

 \bullet

۲

MARCH • 2001				FILENUARY APRIL * <		
SUN	MON	TUE	WED	THUR	FRI	SAT
				1	2	3
4	Sample (5)	6	7	8	9	10
11	12	13	Sample (14)	15		17
18	Sample (19)	20	21	22	23	24
25	26	27	Sample(28)	29	30	31

Gear types
Sampling periodicity
Sampling habitat

Spatial and Temporal Effects on Sampling Design

Distribution of fish eggs and larvae vary

May

April

June

Temporally

- Seasonal variability
- Annual variability
- Temperature
- Physicochemical variables

Spatially

Must be accounted for in study design

June

Marine Systems

- Horizontal and vertical patchiness
- Passive and active aggregation

Vertical patterns of distribution depend on

- Egg and larval buoyancy
- Larval behavior
- Temperature patterns

 \bullet

Vertical patterns of distribution also depend on

- Current patterns
- Salinity
- Light
- Distribution and movement of predator and prey

Fish Density/Sample Volume Effects on Sampling Design

- Consider discontinuities of ichthyoplankton

 Horizontal
 Model of the temperature
 - Vertical
 - Temporal

Species and size composition can be affected by

- Volume sampled
- Towing path
- Towing speed

Statistical Considerations

Biases can occur due to:

Extrusion of small larvae through net mesh
Net avoidance by larger larvae

Replication

 Allows for estimation of between sample variance

Accuracy

 Depends on ability of sampling design to effectively describe egg and larval characteristics

Precision

 Strongly affected by ichthyoplankton patchiness and number of samples taken

Effects of Gear Characteristics on Sampling Design

- Clogging of nets

 Unequal sampling
 Inaccurate data
- Mesh size
 - Condition of fish
 - Number of fish
 - Species

Choice of mesh size depends on

- Gear type
- Water velocity through gear
- Size of target organisms

Gear failure can occur due to

- Mechanical problems
- Operator inexperience
- Collision with debris or substrate

Effects of Fish Behavior on Sampling Design

- Important effects on
 - Where
 - When
 - How early life stages are collected

Active avoidance of towed nets and pumps is related to

Larval size and position relative to net

- Light levels
- Physical characteristics of sampling gear

Active avoidance is related to (cont.)

- Velocity of gear or water flow into the gear
- Visual signals
- Hydrostatic pressure waves

9.4 Sample Preservation

Important for

 Taxonomic studies
 Ecological studies

Fixation method should prevent

۲

- Microbial degradation
- Autolysis
- Cellular damage due to osmotic changes

۲

۲

Degree of degradation depends on

- Developmental stage
- Chemical concentration
- Osmotic strength

High Degradation

Low Degradation

Fixation and Preservation

 All use aldehydebased solutions (eg. formaldehyde and glutaraldehyde)
 - can be reversed by washing

Formaldehyde preferred

Less noxious

- Less expensive
- Superior long- term preservation

But...formaldehyde

 Is acidic and causes decalcification and demineralization of bone

Formaldehyde can be buffered using

- Sodium borate
- Calcium carbonate
- Sodium phosphate

۲

Sodium acetate

Alcohol can be used but:

 Cause significant shrinkage and deformation due to dehydration

Sample processing

- Immediate processing important
- Returned to the lab for
 - Sorting
 - Enumeration
 - Identification
 - Measurement...etc.

Sub-sampling

۲

 Necessary only if densities of desired organisms is high

Sorting

- Separate eggs and larvae
- Fixative washed out
- Well ventilated room
- Dye can be used
- Microscope helpful

Terminology and Identification

- Should be done with considerable evidence from
 - Individual and comparative descriptions
 - Regional keys and manuals
 - Reference collections

 Taxonomic experts

Egg Developmental Stages (ovulation-hatching)

۲

 Egg structure consists of - Outer membrane (chorion) **Perivitelline space** Inner egg membrane (only some fishes) – Egg yolk

Most fish oviparous

- Ovulation followed by release of eggs to environment
- Eggs fertilized by sperm from males
- Eggs undergo changes in structure and function
 - Egg activation to prevent polyspermy
 - Chorion hardening

Cell division

Meroblastic (common)

۲

۲

۲

۲

Holoblastic

Intermediate

Stages of egg and embryo development

- Early cleavage, 1-64 cells
- Morula, blastomeres that form a cluster of cells

- Ectoderm, mesoderm and endoderm
- Early embryo, formation of the embryonic axis

Stages of egg and embryo development (cont.)

۲

- Tail-bud stage, prominent caudal bulge and cephalic development
- Tail-free stage, separation of the tail from yolk

 \bullet

۲

 Late embryo, embryo has developing characteristics of its hatching stage

Egg Identification

Larval Developmental Stages

 Based on presence or absence of yolk material - Yolk-sac larvae – Larvae - Pre-juvenile or transitional

Larval Developmental Stages (cont.)

 Based on changes in the homocercal caudal fin – Preflexion larvae - Flexion larvae - Postflexion larvae

Larval Developmental Stages (cont.)

 Based on morphogenesis of the median finfold and fins - Protolarvae Mesolarvae - Metalarvae

Larval fish identification

Myomeres

 Several methods of identification

- Myomere counts
 - Chevron-shaped serial segments of body muscles
- Morphometric analyses
 - Describe body form

Larval fish identification (cont.)

Taxonomic guides

- Supplemental identification techniques
 - Osteological features
 - Organism clearing and staining
 - X-ray radiography
 - Histology

