- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Chapter 14

۲

Field Examination of Fishes

14.2 Routine Examination-Basic Observations (cont.)

- Sorted by species
- Limit handling of live fish
- Weights and measures taken
- Scales taken for age and growth

Basic Observations

 External sexing done (immature fish cannot be sexed externally)

- Brighter coloration in males
- Difference in genital opening
- Difference in shape of head

Dissection can be used to sex

Analyses of diet

- Stomach content preservation
- Lavage...non lethal

 Washing out of gut contents

If small, entire specimen (fish) preserved

Necropsy-Based Fish Health Assessment (cont.)

- Condition and organ indices

 K or C- ratio of weight to the cube of length
 - The higher, the plumper the fish
 - Organosomatic indices- ratio of organ to entire body
 - Decrease in starved fish
 - Increase in fish subjected to toxins

Necropsy-Based Fish Health Assessment (cont.) <u>Condition and organ indices</u>

 Hepasomatic indexliver weight/body weight Gonadosomatic indexovary weight/body weight

 Indicates time of spawning

Necropsy-Based Fish Health Assessment

- Systematic condition assessment
 - Comparison with past observations
 - Blood constituents (hematocrit, leukocrit and plasma protein)
 - State of maturity
 - Condition of gills, pseudobranch, mesenteric fat, spleen etc

Damage to extremities

14.3 Emergency Examination

Definition of Health and Illness in Wild Fishes: - Healthy fish may have pathogens or stress **Diseased fish are affected to reduce** growth, slow reproduction, or die Refer to box 14.1 for list of Pathogen-Induced Fish Diseases

Pathogens not the only cause of disease

 Degraded water quality Toxic pollutants **Poor nutrition** Overcrowding (encourages transmission of pathogens) **Excessive competition**

Limitations of Field Diagnosis

Health cannot be completely assessed through clinical signs
Laboratory examination necessary
Pathogen must be identified before positive diagnosis

Investigations of Fish Kills

- Expertise in biology, chemistry, and statistics needed
- Requires immediate
 response
- Water samples inside and outside kill taken

Investigations of Fish Kills

- Basic water quality characteristics measured on site
- Individual fish examined for ill health and frozen
- The cause of a kill is often not immediately known

Data may be used in legal proceeding (cont.)

- Data should:
 - be well documented
 - not easily lost or altered
- Identify person responsible for each measurement
- Notes should be duplicated and stored separately from original

Data may be used in legal proceeding

Photos and videos can be valuable
Use "chain of custody" for samples

Primary role of fisheries biologist in fish kills

Determine number, size and species killed Areal extent of kill Monetary value of fish kill

\$\$\$

Behavioral Signs

- "Piping" or gulping air at surface

 response to low DO
- "Flashing" ... fish rubbing itself against the bottom
- Convulsions
- Whirling 🛶

 Body conformation and color - Excessive mucus production on body and gills Fins clamped close to the body and shimmying – Faded or blotchy coloration

 Kill the fish in humane way

 Is body shape normal?
 Protruding eyeballs

– Exopthalmia

Fins

- Should be intact to the end of the rays
- Free of slime or cottony fungus (Saprolegnia spp)
- No hemorrhagic areas
- Frayed fins
 (Flexibactor spp)

Skin, scales and mucus Scales- lie flat and firmly attached Mucus- thin, clear and evenly distributed

Surface- free of
 Reddened areas
 (Aeromonus spp),
 bloody sores,
 nodular growths,
 fungus

External Signs

Gills

- To inspect gills, pull operculum back
- If freshly killed, should be bright red, NO thick mucus covering
- Usual site for ectoparasites

Internal Signs

Technique for opening fish

- Lay fish on side
- Make incision above vent, along rib cage
- Scissors work best up to 0.5 kg
- Check digestive tract, kidney, and muscle

14.4 Sampling for Disease Organisms

 Diagnostic **Expertise**important Should be sent to fish health expert Consult state fish and wildlife agency

Sampling for parasites (cont.)

- Selection and care of specimens
 - Live fish mandatory for parasite identification
 - Requires good
 dissection microscope
 - Thorough examination requires compound microscope

Sampling for parasites

 Basic parasite examination – Kill the fish Keep the surface moist **Remove the portions of fins and** examine Take mucus scrapings - examine under compound microscope **Cut gill arch and examine Dissect fish and examine internal** organs

Sampling for bacteria (cont)

 Selection and care of specimens - Fish must be alive or freshly killed – If cannot be kept alive, freeze in individual plastic bags

Sampling for bacteria

- Bacterial indentification requires training
- Bacterial isolation fairly simple
 See page 443 or
 - see page 443 of text for protocol

Sampling Viruses

Requires specialized procedures and equipment
Select fish suspected of viral disease
Transport to fish health laboratory

14.5 Sampling Blood and Tissue

Rationale for collection of blood and tissue samples If no obvious environmental stress factor – No pathogens found - Useful for evaluation of sublethal stress

Sampling Blood (cont.)

Techniques of obtaining blood
 Tapping blood vessels in hemal arch

- If less than 15cm, must be sacrificed
- Larger than 15cm, may use syringe on anesthetized fish

Sampling Blood

Preservation of samples

- Could be stored for several hours
- Hematocrit should be run within minutes of blood collection
- Most blood characteristics determined from plasma
 - Centrifuge and separate immediately

Sampling for Histology (cont.)

- Postmortem changes histological features
- Samples have to be taken from fish collected alive
- Make small thin slices
 Promote rapid penetration of fixative
 Minimize concerns of inaccurate artifacts

Sampling for Histology

Drop in labeled vials of fixative

 Bouin's fluid excellent fixative
 Ten per cent formalin
 Volume of fixative should be 10 times that of tissue

Sampling for Residue Analysis

- Tissue taken from any fish that is not putrid
- Heavy metal- store in plastic
- Organic compoundsstore in foil
- Sample white muscle, as is edible portion