- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Chapter 2

Data Management and Statistical Techniques

2.1 Introduction

 Manager's responsibility

– enumerate change

- assess management actions
- quantify human influences

Need statistical tools
 for these jobs

Special Note: Data is the plural form of datum

 so one says, "The data are..." The data are entered.

not "The data is..."

•

Audience, Scope, and Limitations

- Always see statistician before data collection
- "Will data answer my question?"

Chapter Covers...

- data collection in the field
- computer management
- overview of stats

graphing data

 \bullet

 interpretation of data with statistics

2.2 Data Handling and Database Management

data are expensive to collect so

record accurately
keep it safe
quickly if possible

Field data sheets are standardized by study

- print on waterproof paper
 write with pencil, ink will
 - run
- write legibly, you may not be one reading
- copy data sheets asap

When possible, make use of new technology

- electronic measuring boards
- digital calipers

laptop notebooks and dataloggers

 \bullet

 check to be sure data are being recorded

Data Management

- Natural resource agencies use databases. So...
- Biologists need to understand databases
- Also how to enter and retrieve data

Databases are

- repositories of information
- logically organized
- facilitate retrieval of specific information

 provide for customized output reports

Examples of databases include

- for PC
 dBase IV
 - Paradox

-Access

- Double Helix
- for mainframes
 - Oracle

•

Storage Considerations

- floppies degrade after 5-10 years
- CDroms may degrade after 30 years
- ALWAYS MAKE
 BACKUPS
 - daily, weekly, monthly

 old technology becomes obsolete (5 1/4" floppies)

Error management

- what quality control exists?
- are data within believable ranges?
- check printouts by hand
- use two people to proofread

2.3 Data Visualization (i.e. graphs)

- display all original data
- picture worth 1000 numbers
 - pie chart
 - bar chart
 - histogram (vertical or horizontal)
 - scatter plot
 - line graph
 - (for rules see Box 2.1 pg 23 of text)

 \bullet

Histograms and Bar Charts

۲

Histogram

 for continuous data
 length-frequency data
 watch out for bin size bias

۲

Bar Chart

 for category data

Pie Chart

 \bullet

۲

- also for category data
- like diet components
- size of slice equals relative contribution

۲

۲

Scatter Plots

- show relation between X and Y
- X (independent variable) on horizontal axis
- Y (dependent variable) on vertical axis
- examples:

- length-weight
- spawners-recruits
- effort-yield

Line Graphs

 \bullet

•

time

- for ordered data
- time-series with time on X-axis

2.4 Data Terminology and Characteristics

data set = entire collection of numbers

- case = row of closely associated variables
 Fish Length Weight
 - example: L, W, age of
 - single fish
- variable = column describing an attribute of each case
 - example: sex of each fish

Qualitative and Quantitative data

۲

 qualitative = category data – nominal (sex, species) – ordinal (ranked data) quantitative = numerical data discrete (integers example:age) – continuous (not integers example:length)

Precision, Accuracy, and Bias

 precision = how tight is pattern on shotgun blast?

- tighter means more precision
- accuracy = how close is pattern to center of bull's eye

– closer means more accuracy

bias = consistent inaccuracy

Significant digits

- Minimum accuracy = range / 30
- Maximum accuracy = range/300

3.14159562

2.5 Statistics

- Analyzing and Interpreting data
- Inferences from a sample to the population

100 Tag Returns 500 Tagged Fish

Descriptive Statistics

- summarize lots of measurements
- measures of central tendency
 - mean = arithmetic average
 - median = middle value
 - mode = value occurring the most

Descriptive Statistics (cont.)

measures of dispersion

- range = max min value
- variance = sum of squared deviations
 from sample mean
- standard deviation = square root of variance
- standard error of mean
 standard deviation
 divided by root of
 sample size

Degrees of Freedom

- number of independent observations in data set
- n-1 where n = number of observations
- increased degrees of freedom reduces variance

8

9

12 13

n=27

Confidence Intervals

- sample average rarely equals population mean
- express estimate as a range of values
- average plus/minus Student's t (n-1 df) times standard error of mean

Measures of Precision

 coefficient of variation = standard deviation divided by sample mean times 100

 \bullet

reported in percent

Distributions

- normal bell shaped curve
- skewed data clumped to right or left
- bimodal two peaks in the range of data

Populations and Samples

- population = all the elements under investigation
- sample = some of the elements
- biological populations sometimes change because fish migrate

Sampling Design Considerations

- size of the sampling area
- sampling units in each sample
- location of sampling units in sampling area
- selection of the sampling unit
- cost/time

Random sample

 every member of the population has equal opportunity to be sampled

with or without replacement
random number table

Stratified random sample

 random samples from subdivisions of populations

- subdivisions are strata based on some unifying characteristic
- account for sources of variation among samples
- strata are homogeneous

Cluster sampling

- determine sampling sites
- choose a site randomly
- take all the samples from a single site

Systematic sampling

- select sampling units at regular intervals
- examples:

- sample every fifth 100-m section of a stream
- measure and weigh every 4th fish from a population

Sample Size

- larger the better, money and time constraints
- stepwise determination (5, 10, 15,...) till mean and CI are stable
- usually n > 30

Inferential Statistics and Hypothesis Testing

- null hypothesis... no difference in pop means
- two-sided alternative hypothesis... yes difference in pop means
- one-sided alternative hypothesis... pop1 > pop2 or vise versa
- the smaller the P-value the more likely that null hyp. is wrong

Levels of significance

P > 0.05 0.01 < P < 0.05 0.001 < P < 0.01 0.0001 < P < 0.001

not significant significant highly significant very highly sig.

Statistical Errors

 Null hyp. true but we reject - Type I error (probability = alpha)

 Null hyp. false but we accept - Type II error (probability = beta)

Power of the test = (1-beta)

Nonparametric and Parametric Tests

- parametric tests assume data distributed normally
- non-parametric tests are distribution-free, uneffected by outliers
- non-normal data might be transformed to approximate normality

Basic Inferential Tests of Significance

- t-Test are two means different?
- paired t-Test are means of paired data different?
- anova are any of a group of means different from the others?

Chi-square test - does observed freq. dist.
 differ from expected freq. dist.?

A = B = C = D

Regression Analysis and Measures of Association

slope b

X

a

- linear regression are two variables related according to y = a + b x
- correlation coefficient ranges from

-1 completely opposite to +1 completely similar

 geometric mean regression - central trend line = slope/corr. coef.

Data transformations

۲

۲

•

2.6 Critical Considerations in Study Design

 mensurative design passive monitoring over time or through space

 manipulative design - some variable is controlled

- provide at least 2 treatments
- one treatment is control
- before/after might be manipulative

Replication

- multiple experimental units per treatment
- controls error occurring in the experiment
- more precise measure of effect of treatments

- pseudoreplication
 - treatments are not truly replicated
 - replicates are not stat. independent